Content Overview

Dear Family,

In our math class we are studying ratios, rates, and percent. We will work with tables, diagrams and equations. These will help your child to develop her or his understanding of ratios, rates, and percent as well as to learn methods for solving problems. You can help your child by asking him or her to explain the tables, diagrams and equations.

Here are some examples of the kinds of problems we will solve and the kinds of tables, diagrams, and equations we will use.

- Purple Berry juice is made from 2 cups of raspberry juice for every 3 cups of blueberry juice. How many cups of blueberry juice are needed for 11 cups of raspberry juice?

Table with Unit Rate
Equation

$$
\begin{aligned}
\frac{2}{3} & =\frac{11}{x} \\
2 x & =33 \\
x & =\frac{33}{2}
\end{aligned}
$$

The answer is $\frac{33}{2}$ or $16 \frac{1}{2}$ cups of blueberry juice.

- A juice company's KiwiBerry juice is made by mixing 2 parts kiwifruit juice with 3 parts strawberry juice. To make 20 liters of KiwiBerry juice, how much kiwifruit juice is needed?

Factor Puzzle

	k	KB
		2

Tape Diagram

The answer is 8 liters of kiwifruit juice.

Content Overview

- If 12 milligrams of niacin is 60% of the recommended daily allowance for niacin, then what is the recommended daily allowance for niacin?

Double Number Line Diagram
milligrams

The answer is 20 milligrams.

- A double number line can be used to convert between centimeters and millimeters. Complete the double number line to show how centimeters and millimeters are related.

Double Number Line Diagram

If you have any questions or comments, please call or write to me.

Sincerely,

Your child's teacher

Estimada familia,

En la clase de matemáticas estamos estudiando razones, tasas y porcentajes. Para que su hijo logre una mejor comprensión de esos conceptos y aprenda métodos de resolución de problemas, trabajaremos con tablas, diagramas y ecuaciones. Usted puede ayudar, pidiéndole a su hijo o hija que le explique cómo usar las tablas, los diagramas y las ecuaciones.

Aquí tiene algunos ejemplos de los tipos de problemas que resolveremos y de los tipos de tablas, diagramas y ecuaciones que usaremos.

- Para hacer jugo azul se necesitan 2 tazas de jugo de frambuesa por cada 3 tazas de jugo de arándanos. ¿Cuántas tazas de jugo de arándanos se necesitan si se usan 11 tazas de jugo de frambuesa?

Tabla con tasa por unidad

Ecuación

$$
\begin{aligned}
\frac{2}{3} & =\frac{11}{x} \\
2 x & =33 \\
x & =\frac{33}{2}
\end{aligned}
$$

La respuesta es $\frac{33}{2}$ o $16 \frac{1}{2}$ tazas de jugo de arándanos.

- Una compañía hace jugo de kiwi con fresa mezclando 2 partes de jugo de kiwi con 3 partes de jugo de fresa. Para hacer 20 litros, ¿cuánto jugo de kiwi se necesita?

Rompecabezas de factores

	k	KF
	2	5
1	2	5
4	8	20

Diagrama en forma de cinta

Un vistazo

 general al contenido- Si 12 miligramos de niacina equivalen al 60% del consumo diario que se recomienda, entonces, ¿cuál es el consumo diario total de niacina que se recomienda?

Diagrama de recta numérica doble miligramos

porcentaje
La respuesta es 20 miligramos.

- Se puede usar una recta numérica doble para realizar conversiones entre centímetros y milímetros. Completen la recta numérica doble para mostrar cómo se relacionan los centímetros y los milímetros.

Diagrama de recta numérica doble

Si tiene comentarios o preguntas, por favor comuníquese conmigo.

Atentamente,

 El maestro de su hijoEn la Unidad 7 se aplican los siguientes estándares auxiliares, contenidos en los Estándares estatales comunes de matemáticas con adiciones para California: 6.RP.1, 6.RP.2, 6.RP.3, 6.RP.3a, 6.RP.3b, 6.RP.3c, 6.RP.3d, 6.EE.6, 6.EE.7, 6.EE.9, 6.G.1, 6.G.4, y todos los de prácticas matemáticas.

Compare Paint Ratios

Grasshopper Green paint has a blue:yellow paint ratio of 2:7. Gorgeous Green paint has a blue:yellow ratio of 4:5.

You can compare ratios. You can find out which ratio makes paint that is more blue and which ratio makes paint that is more yellow.

To find out which paint is more blue, make the values for yellow the same. One way to do this is to make the value for yellow be the product of the yellow values in the basic ratios.

1. What is the product of the yellow values in the basic
ratios? \qquad
2. Complete these ratio tables.

Grasshopper Green	
Blue	Yellow
2	7
	35

Gorgeous Green	
Blue	Yellow
4	5
	35

3. Which paint is more blue? Why?
\qquad
\qquad
\qquad
4. Which paint is less blue? \qquad
5. To find out which paint is more yellow, make the values for blue the same. Complete these ratio tables.

Grasshopper Green	
Blue	Yellow
2	7

Gorgeous Green	
Blue	Yellow
4	5

6. Which paint is more yellow? \qquad
7. Which paint is less yellow? \qquad

Graph and Compare Paint Ratios

8. Look back at the tables in Exercises 2 and 5 on page 271. Write the three ratios for each paint color in these tables.

Grasshopper Green	
Blue	Yellow

Gorgeous Green	
Blue	Yellow

9. Graph two points from each table. Draw and label a line for Grasshopper Green and a line for Gorgeous Green.

10. Discuss how the graphs can be used to decide which paint is more blue, less blue, more yellow, and less yellow.

Ratio as a Quotient

You can use a unit rate to describe any ratio. A unit rate for a ratio tells the amount of the first attribute for 1 unit of the second attribute.

Look again at Sue's and Ben's drink recipes.
Sue's recipe has 5 cups cherry juice and 4 cups orange juice.
Ben's recipe has 6 cups cherry juice and 5 cups orange juice.

1. Find the amount of cherry juice in each drink for 1 cup of orange juice. Remember that when you divide both quantities in a ratio table by the same number, you get an equivalent ratio.
Sue's Recipe
Cherry : Orange

$\div 4$| 5 | 4 |
| :---: | :---: |
| $\frac{5}{4}$ | 1 |

$\frac{5}{4}$ is the quotient of $5 \div 4$.
Sue has $\frac{5}{4}$ cups of cherry juice for every cup of orange juice.

The unit rate for the ratio $5: 4$ is $\frac{5}{4}$.

Ben's Recipe

Cherry : Orange

is the quotient of $6 \div 5$.
Ben has \qquad cups of cherry juice for every cup of orange juice.

The unit rate for the ratio \qquad is
2. Find the amount of orange juice in each drink for 1 cup of cherry juice. This time use the orange:cherry ratio.

Sue's Recipe

Orange : Cherry

4	5
	1

Sue has \qquad cup of orange juice for every cup of cherry juice.

The unit rate for the ratio \qquad is

Ben's Recipe

Ben has \qquad cup of orange juice for every cup of cherry juice.

The unit rate for the ratio \qquad is
\qquad .

Use Unit Rate Language to Describe Ratios

Complete each sentence using a fraction.

3. Pedro uses a ratio of 7 quarts of blue paint to 4 quarts of white paint, a ratio of 7 to 4 .
a. Pedro uses \qquad quarts of blue paint for every quart of white paint.
b. The unit rate for the ratio 7:4 is \qquad .
4. Grandpa's soup uses 3 cups of tomatoes to 8 cups of broth, a ratio of 3 to 8 .
a. Grandpa uses \qquad cup of tomatoes for every cup of broth.
b. The unit rate for the ratio $3: 8$ is \qquad .
5. The unit rate for the ratio $a: b$ (b not equal to 0) is \qquad -.

Compare Ratios Using Unit Rates

Look back at the unit rates you found on page 273 to answer these questions.
6. Whose drink is more cherry-flavored, Sue's or Ben's? How can you use unit rates to decide?
\qquad
\qquad
\qquad
7. Whose drink is more orange-flavored, Sue's or Ben's? How can you use unit rates to decide?

The Unit Rate Strategy

You can use the unit rate strategy to find the unknown in a proportion problem.
8. Maria's favorite juice recipe uses

4 cups of mango juice and 3 cups of strawberry juice. How many cups of strawberry juice should she mix with 5 cups of mango juice to make her favorite juice?

Answer: \qquad cups
9. Adelina makes 2 drawings in her sketchbook while Jayden makes 5 drawings in his sketchbook. If both continue at their same constant rates, how many drawings will Adelina have made when Jayden has made 7 drawings?

Answer: \qquad drawings

Solve. Use the unit rate strategy.

10. Diana can do 3 sit-ups in the time it takes Walter to do 2. How many sit-ups will Walter have done when Diana has done 12 sit-ups?

Answer: \qquad sit-ups
11. Grandfather paid $\$ 6$ for 14 apples. If I buy the same kind of apples, how much will 35 apples cost?

Answer: \qquad

Since the unknown is the number of cups of strawberry juice, use the unit rate for the ratio strawberry:mango.

Since the unknown is the number of Adelina's drawings, use the unit rate for the ratio Adelina:Jayden.

Adelina : Jayden
$\div 5\left(\begin{array}{\|c\|c\|}\hline 2 & 5 \\ \hline \frac{2}{5} & 1 \\ \hline & \div 5 \\ \hline \frac{14}{5} & 7 \\ \hline\end{array}\right.$

Variations on the Unit Rate Strategy

12. Gen, Claire, and Joey all use the unit rate strategy to solve this problem. But they record their thinking in different ways. Discuss how their methods are alike and how they are different.

John can plant 7 tomato vines in the time it takes Joanna to plant 4 tomato vines. At that rate, when Joanna has planted 11 tomato vines, how many has John planted?
a. Gen: I use a ratio table. First I divide and then I multiply.

b. Claire: I make a Factor Puzzle and put the unit rate on top.

c. Joey: I "go through 1." I don't even write the unit rate.

John : Joanna

So I do the same
for 7: 7 $\div 4-11$ $\frac{7}{4} \cdot 11=\frac{77}{4}$

Answer: $\frac{77}{4}$ tomato vines
Solve using any variation of the unit rate strategy.
13. Shawn plants 6 tulip bulbs in the time it takes Martin to plant 7 tulip bulbs. How many tulip bulbs will Shawn have planted when Martin has planted 21 bulbs?

Answer: \qquad
14. Amanda buys 3 pounds of blueberries for $\$ 12$. At the same price per pound, how much will 8 pounds of blueberries cost?

Answer: \qquad

Horizontal Ratio Tables

1. Complete the ratio table.

Cups of Juice

Tangerine					
Cherry					
			1	8	
2					
		1		6	15

a. The basic ratio of $\frac{\text { tangerine }}{\text { cherry }}$ is \qquad .
b. There are \qquad cups of tangerine juice for every cup of cherry juice.
c. The basic ratio of $\frac{\text { cherry }}{\text { tangerine }}$ is \qquad .
d. There is \qquad cup of cherry juice for every cup of tangerine juice.
2. A flower mix has 21 tulips and 14 daffodils.
a. The basic ratio of $\frac{\text { tulips }}{\text { daffodils }}$ is \qquad .
b. There are \qquad tulips for every daffodil.
c. The basic ratio for $\frac{\text { daffodils }}{\text { tulips }}$ is \qquad _.
d. There is \qquad daffodil for each tulip.
e. Using the basic ratio, how many tulips would be placed with 6 daffodils?
f. Using the basic ratio, how many daffodils would be placed with 6 tulips?

Solve.

3. At the farm the ratios of mothers to baby sheep in each field are equivalent. If there are 20 mothers and 24 babies in the small field, how many babies are with the 45 mothers in the large field?

Equivalent Fractions and Equivalent Ratios

4. Show how the pattern of equivalent fractions continues.

\square b. \qquad C. $\frac{8}{12} \square$
d. \qquad
5. Show how the pattern of equivalent ratios continues.

2 cups of raspberry:3 cups of blueberry
4 cups of raspberry:6 cups of blueberry
a. \qquad cups of raspberry: \qquad cups of blueberry
b. \qquad cups of raspberry: \qquad cups of blueberry
6. Draw to show the ratio pattern.

7. Discuss how equivalent fractions and equivalent ratios are alike and different.

Vocabulary

cross-multiplication

Understanding Cross-Multiplication

When two equivalent ratios are written in a Factor Puzzle, the products of the numbers in opposite corners are equal. This results in a strategy for solving proportions called cross-multiplication.
$\frac{10}{15}=\frac{18}{27}$

Factor Puzzle

	5	9
	10	18
	15	27

Multiply opposite corners. Products are equal.

Cross-multiply.

$$
\begin{aligned}
(2 \cdot 9)(3 \cdot 5) & =(2 \cdot 5)(3 \cdot 9) \\
18 \cdot 15 & =10 \cdot 27
\end{aligned}
$$

Products are equal.

$18 \cdot 15=10 \cdot 27$
4. $\frac{s}{40}=\frac{10}{16}$
2. $\frac{8}{p}=\frac{14}{21}$
3. $\frac{10}{25}=\frac{t}{15}$
$18 \cdot 15=10 q$

$$
q=
$$

$p=$ \qquad $s=$ \qquad
Write the ratios in each proportion in fraction form. Then, solve by using cross-multiplication.
5. $16: 20=12: a$
6. $18: b=27: 33$
7. $6: 15=c: 20$
8. $d: 9=4: 6$

$$
a=\square \quad b=\square \quad c=\square
$$

Cross-Multiplication and Unit Rates

9. Zander paid $\$ 7$ for 5 avocados. How much would 9 avocados cost?

Discuss how these solution strategies relate to each other.

Rate Table

Factor Puzzle

Cross-Multiplication

$$
\begin{aligned}
\frac{7}{5} & =\frac{6}{9} \\
c \cdot 5 & =7 \cdot 9 \\
5 c & =63 \\
c & =\frac{63}{5}
\end{aligned}
$$

The price for 9 avocados is $\frac{63}{5}$ dollars, or $\$ 12.60$.

What's the Error?

Dear Math Students,

It took me 15 minutes to ride my bike 3 miles. I wanted to find out how long it would take me to ride 10 miles. My work can't be right because my answer is only 2 minutes! What did I do wrong?

$$
\begin{aligned}
\frac{15}{23} & =\frac{10}{t} \\
10 \cdot 3 & =15 \cdot t \\
30 & =15 t \\
2 & =t
\end{aligned}
$$

Thank you.

Puzzled Penguin

10. Write a response to the Puzzled Penguin.
\qquad
\qquad
\qquad
\qquad

Vocabulary

tape diagram

Using Tape Diagrams to Model Ratios

A juice company's KiwiBerry juice is made by mixing 2 parts kiwifruit juice with 3 parts strawberry juice.

The ratio of parts of kiwifruit juice to parts of strawberry juice can be modeled by using a tape diagram.

Solve each problem three ways: using the tape diagram, using a Factor Puzzle, and using cross-multiplication.

1. How many liters of kiwifruit juice should be mixed with 15 liters of strawberry juice to make KiwiBerry juice?

	1	
k	2	
		3

$$
\frac{2}{3}=\frac{x}{15}
$$

2. How many liters of strawberry juice should be mixed with 50 liters of kiwifruit juice to make KiwiBerry juice? \qquad liters
3. How many liters of kiwifruit juice should be mixed with 20 liters of strawberry juice to make KiwiBerry juice? \qquad liters
\qquad liters

KiwiBerry Juice

2 parts kiwifruit

3 parts strawberry

\qquad ters

Using Tape Diagrams to Model Ratios (continued)

To make Perfect Purple paint, blue paint and red paint are mixed in a ratio of 3 to 5 .

Solve each problem three ways: using a tape diagram, using a Factor Puzzle, and using cross-multiplication.
4. How many liters of red paint should be mixed with 21 liters of blue paint to make Perfect Purple paint? \qquad liters

5. How many liters of blue paint should be mixed with 23 liters of red paint to make Perfect Purple paint? \qquad liters

Choose a method to solve.
6. To make bricks, you can mix clay and sand in a ratio of 2 to 3 . How much clay do you need to mix with 10 cubic yards of sand?

Part-to-Whole Ratios

Remember that KiwiBerry juice is made by mixing 2 parts kiwifruit juice with 3 parts strawberry juice.

We can solve problems involving the total amount of juice or the total number of parts.

Solve each problem three ways: using the tape diagram, using a Factor Puzzle, and using cross-multiplication.
7. How many liters of kiwifruit juice should be used to make 50 liters of KiwiBerry juice? \qquad liters

$$
\frac{2}{5}=\frac{x}{50}
$$

8. How many liters of strawberry juice should be used to make 20 liters of KiwiBerry juice? \qquad

9. If 7 liters of kiwifruit juice are used, how many liters of KiwiBerry juice can be made? \qquad liters

liters

Part-to-Whole Ratios (continued)

To make Perfect Purple paint, blue paint and red paint are mixed in a ratio of 3 to 5 .

Solve each problem three ways: using a tape diagram, using a Factor Puzzle, and using cross-multiplication.
10. How much red paint is needed to make 20 liters of Perfect Purple paint?

11. If 10 liters of blue paint are used, how many liters of Perfect Purple paint can be made? \qquad liters

Choose a method to solve.
12. To make bricks, you can mix clay and sand in a ratio of 2 to 3 . To make 55 cubic feet of the mixture, how much sand do you need to use? How much clay do
\qquad you need to use?

Different Ways to Describe Ratios

Seth made a sand mixture by mixing 4 parts green sand with 3 parts yellow sand.

Complete each sentence to describe the green sand to yellow sand ratio.

1. The mixture is \qquad parts green sand and
\qquad parts yellow sand.
2. Green sand and yellow sand are mixed in a ratio of
\qquad to \qquad or \qquad : \qquad
3. For every \qquad cups of green sand, there are
\qquad cups of yellow sand in the mixture.
Complete each sentence to describe the green sand to total ratio.
4. There are \qquad parts green sand in \qquad parts total mixture.
5. Green sand and total mixture are in a ratio of \qquad
to \qquad or \qquad : \qquad
6. For every \qquad cups of green sand, there are
\qquad cups of mixture.

Describe the yellow sand to total ratio in three ways.
7. \qquad
8. \qquad
9. \qquad

Different Portions Can Be One Whole

10. Complete each tape diagram.

Unit Rates

Write a fraction to complete each unit rate.
11. \qquad cup of yellow sand for every 1 cup of green sand in the mixture
12. \qquad cups of green sand for every 1 cup of yellow sand in the mixture
13. \qquad cup of green sand and \qquad cup of yellow sand for every 1 cup of mixture
14. \qquad cups of mixture for every 1 cup of green sand
15. \qquad cups of mixture for every 1 cup of yellow sand

Multiplicative Comparisons

Write a fraction to complete each multiplicative comparison.

16. The amount of yellow sand is \qquad times the amount of green sand.
17. The amount of green sand is \qquad times the amount of yellow sand.
18. The total amount of mixture is \qquad times the amount of green sand.
19. The total amount of mixture is \qquad times the amount of yellow sand.

What's the Error?

Dear Math Students,
I made my own sand mixture. I mixed 2 parts purple and 5 parts orange.

orange

Then I wrote this multiplicative comparison.

- The amount of purple sand is $\frac{2}{5}$ times the amount of the total mixture.
My friend says that I made a mistake. Did I? If I did, can you tell me My friend says that I made a mistake. Did I? I
what mistake I made and help me correct it?
Your friend,
Puzzled Penguin

20. Write a response to Puzzled Penguin.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Use Equations to Relate Quantities

21. Let g be the number of cups of green sand in Seth's ratio. Let y be the number of cups of yellow sand in Seth's ratio.

Discuss why these three equations can all be used to relate g and y.

Blue-and-Red Mixtures

22. Make up your own blue-and-red sand mixture.

Your mixture should have a total of 5 parts. Draw a tape diagram to show the ratio of blue to red.
23. Describe the ratio of blue sand to red sand in three ways.
\qquad
\qquad
\qquad
24. Describe the ratio of blue sand to the total mixture in three ways.
\qquad
\qquad
\qquad
25. Write two sentences that use a fraction to compare the amounts of the two colors. Use the words times as much.
\qquad
\qquad
26. Suppose you make a large batch of your blue-and-red sand mixture. Let b be the number of cups of blue sand that you use, and let r be the number of cups of red sand that you use.
Write three equations relating b and r.
\qquad
\qquad
\qquad
27. How is your mixture different from a mixture with the same colors mixed in a different ratio?
\qquad
\qquad

Practice Solving Rate and Ratio Problems

Solve. Use different methods including tables, Factor Puzzles, cross-multiplication, and tape diagrams. Look for the problems that cannot be solved with any of these!

1. In a lab, Chemical 1 and Chemical 2 are mixed in a ratio of 4 to 5 . How much of Chemical 1 is needed to mix with 35 liters of Chemical 2?
2. In a lab, Chemical 1 and Chemical 2 are mixed in a ratio of 4 to 5 . How much of each chemical is needed to make 35 liters of the mixture?

Chemical 1: \qquad Chemical 2: \qquad
3. Pokey the snail travels 25 centimeters every 2 minutes. How far will Pokey go in 15 minutes?
4. When Gary the snail travels at a steady rate of 15 centimeters per minute, it takes him 6 minutes to get from the pineapple to the rock. How long will it take Gary to get from the pineapple to the rock if he travels at a steady rate of 30 centimeters per minute?
5. At a factory, an assembly line produces 100 cans every 3 minutes. How long will it take the assembly line to produce 250 cans?
6. At a factory, an assembly line produces 100 cans every 3 minutes. How many cans will the factory produce in 8 hours?

Practice Solving Rate and Ratio Problems (continued)

7. At a factory, each assembly line produces 100 cans every 3 minutes. If two assembly lines are working, how many cans will they produce in 15 minutes?
8. It takes Brittany 2 hours to mow 5 acres of grass. At that rate, how long would it take Brittany to mow 8 acres?
9. It takes Brittany 2 hours to mow 5 acres of grass. If Austin mows grass at the same rate as Brittany, how long will it take the two of them working together to mow 15 acres of grass?
10. Jorge and Ryan are running laps around the track. Jorge runs 5 laps for every 4 laps that Ryan runs. When Ryan has run 15 laps, how many laps will Jorge have run?
11. At a perfume factory, fragrance designers are mixing musk oil and spice cologne in different ratios. Mixture 1 is 2 parts musk oil to 5 parts spice cologne. Mixture 2 is 3 parts musk oil to 7 parts spice cologne. Which will have more of a spice fragrance? Explain.
12. Fragrance designers make Roselily perfume by mixing rose and lily perfumes. In Roselily perfume, the amount of rose is $\frac{2}{5}$ times as much as the amount of lily. What is the ratio of rose to lily in Roselily? Draw a tape diagram to show the ratio.

Define Percent

Percent means "out of 100 " or "for each 100." The symbol for percent is \%.
37% is read " 37 percent."
It can mean the fraction $\frac{37}{100}$, the ratio $37: 100$, or the rate 37 per 100.

The fans at a sold-out concert are in 100 equal sections of seats. Each small rectangle in the diagram represents one section of fans.

1. Color one section blue.

What fraction of the fans is this?

What percent of the fans is this?
3. Color 23% of the sections green. What fraction of the fans is this?
\qquad
2. Color three sections red.

What fraction of the fans is this?

What percent of the fans is this?
4. Color 37% of the sections yellow. What fraction of the fans is that?
5. Shade some sections in purple. What percent did you shade?

Percents of Bar Diagrams

The bars in Exercises 6-9 are divided into 100 equal parts.
6. Shade 5\% of the bar.
\square
7. Shade 15% of the bar.

8. Shade 45\% of the bar.

9. Shade 85% of the bar.

10. Label each section with the percent of the whole bar it represents. Under the section, write the fraction it represents.

Bar A

$\ldots \%$	\ldots

Bar B

\qquad

Bar C

$\%$	\ldots	$\%$	$\%$	$\%$

Bar D

11. Shade 70\% of Bar B.
12. Shade 60% of Bar C.
13. Shade 75\% of Bar D.

Relating Percents, Decimals, and Fractions

14. Label each long tick mark with a decimal, a percent, and a fraction with a denominator of 10 . If the fraction can be simplified, write the simplified form as well.

15. Write each percent as a fraction with denominator 100 and as a decimal. Then place the percents and decimals on the number lines.

Percent	83%	51%	46%	6%	60%	27%	127%	3%	30%	130%
Fraction	$\frac{83}{100}$						$\frac{127}{100}$			
Decimal	0.83						1.27			

What's the Error?

Dear Math Students,
I said that 7% is 0.7 , but my friend said that
I am not right. Why not? Please help me understand how percents and decimals are related.

Thank you.
Puzzled Penguin

16. Write a response to Puzzled Penguin.
\qquad
\qquad

Percents and Area

What percent of the figure is shaded?

17.

This part is half, so it is 50%.
These 5 parts make 50%.
So, they are 10% each.
19. \qquad

18.

20. \qquad

Model Finding a Percent of a Number

The 300 students at a school are in 100 groups of 3 ．

	X	Kx	＊＊	枵最星	崖最暏	碞最暏	蝼星		
	豕兄剚	沓景	沓品	景昳星	景最暏	䟦易	㩆暏	崖最暏	
	景	\％	景碞暏	晾跤	晈晾暏	蒝星	蒝最景	㕈最星	
豕昳暏	帐暏碞	景最旲	㕈晾暏	旻最最	景晾崖		歇揭	晈晾	
豕星星	晾星	碞碞	晹最星		崖㞸星	晈映暏	碞碞	䟥星	
豕景品	沓吴吴	就吴号	晈跤	崖最最	星䟥	㕈吴号	蒝昳	碞最暏	
豕昳暏	晨最	景星	x	景碞	景最景	影最旲	蜄星	政星	
旼星暏	豕品品	景昳沓	星星	景碞吴	蒝最暏		x	蒝最暏	
xx	沓星品	景呈品	xxy	xıx	¢x	＊	＜	蝼星星	

1．Color one group blue．
What percent of the students is this？
\qquad
What number of students is this？
\qquad
3．Color 17 groups green．
What percent of the students is this？
\qquad
What number of students is this？
\qquad
5．Color $\mathbf{2 4 \%}$ of students orange．
What number of students is this？

2．Color four groups red．
What percent of the students is this？
\qquad
What number of students is this？

4．Color 9% of the students yellow．
What number of students is this？
\qquad

6．Color 35% of the students purple．
What number of students is this？

Find a Percent of a Number

Three students had different ideas about how to solve the following problem.

Of the 300 students at a school, 35% say they are going on a field trip. How many students are going on the field trip?

Use each idea to solve the problem.
Show your work.
7. Anna's idea: I will divide 300 by 100 to find 1% of 300 . Then, I will multiply that answer by 35 to find 35% of 300 .
8. Rantavious's idea: I will use the fact that 35% of 300 means $\frac{35}{100}$ times 300 .
\qquad
9. Jon's idea: If f is the number of students going on the trip, then the fraction of students going is $\frac{f}{300}$, and it is also $\frac{35}{100}$. I can write and solve a proportion.
10. What is 80% of 300 students? Solve in two ways.
\qquad
11. What is 26% of 1,200 students? Solve in two ways.

Percent as a Ratio

Now the students at the school are in 3 groups of 100.

ХXXXX XXXXX	
XXXXX XXXXX	
qeqeq eqeqs	
XXXXX XXOXO	
11111 1 人11	
qeqeq eqeqe	
¢0¢per equeq	
N1N1 N1N1	
XXXXX	$X X X X X$

XXXXX	
¢9\％\％e 4eque	
1ヘ1入1 入1人11	
9ever ceqeq	
11111	
入1人11 1N1ス1	
cquq\％4equ\％	
eqver ${ }^{\text {eveve }}$	
ХXXXX XXXXX	
opopo	
人XXX	人XXX
人 人 人	

12．Circle one student from each group in blue．

What percent of the students is this？
\qquad
What number of students is this？
\qquad
14．Circle 45% of the students in green．
How many students is this？Why？
\qquad
\qquad
\qquad

Methods for Finding a Percent of a Number

Five students had different ideas about how to solve the problem below.

Of the 300 students at a school, 99% say they are going to the school party. How many students is this?

Use each idea to solve the problem.

16. Hilda's idea: 99% means 99 for each 100. So, I will use a 99\% ratio table.

Show your work.

	99\% ratio table		
portion	99		
whole	100	200	300

17. Anna's idea: I will divide 300 by 100 to find 1% of 300 . Then, I will multiply that answer by 99 to find 99% of 300 .
\qquad
18. Rantavious's idea: I will use the fact that 99% of 300 means $\frac{99}{100}$ times 300.
\qquad
19. Jon's idea: If p is the number of students going to the party, then the fraction of students going is $\frac{p}{300}$, and it is also $\frac{99}{100}$. I can write and solve a proportion.
\qquad
20. Gregory's idea: 99% is 100% minus 1%, so I will take 1% of the 300 students away from 100% of 300 .
\qquad

Solve.
21. What is 51% of 600 students?
22. What is 49% of 500 students?

Percents of Numbers

The adult dose of a medicine is 8 milliliters. The child dose is 75% of the adult dose. How many milliliters is the child dose?

1. Complete the double number line to help you solve this problem.
2. Discuss and complete these
 solutions.

Trey's Reasoning About Parts
100% is 4 parts, which is 8 mL .
25% is 1 part, which is $8 \mathrm{~mL} \div 4=2 \mathrm{~mL}$.
75% is 3 parts and is \qquad

Tomaslav's Equation
m is 75% of 8 .
$m=\frac{75}{100} \cdot 8=$ \qquad

Quowanna's Factor Puzzle

percent milliliters
portion whole

$\frac{75}{100}$	$=\frac{m}{8}$
$\frac{3}{4}$	$=\frac{m}{8}$
m	$=$

Solve in two ways.

3. The adult dose of a medicine is 6 milliliters. The child dose is 75% of the adult dose. How many milliliters is the child dose?
\qquad
4. A chemist needs 20% of the 120 milliliters of solution in a beaker. How many milliliters of solution does the chemist need?
\qquad

Find the Whole from the Percent and the Part

If 12 milligrams is 60% of the recommended daily allowance for niacin, then what is the recommended daily allowance for niacin?
5. Complete the double number line to help you solve this problem.
6. Discuss and complete these solutions.

Trey's Reasoning about Parts
60% is 3 parts and is 12 mg .
20% is 1 part, which is $12 \mathrm{mg} \div 3=4 \mathrm{mg}$.
100% is 5 parts, which is \qquad

Tomaslav's Equation

60% of g is 12 .
$\frac{60}{100} \cdot g=12$

Quowanna's Factor Puzzle
percent milliliters
portion
whole

60	12
100	

Jessica's Proportion

percent milliliters
portion whole

$$
\frac{60}{100}=\frac{12}{9}
$$

Solve.

7. A chemist poured 12 mL of chemicals into water to make a solution. The chemicals make up 80% of the solution. How many milliliters is the full solution?
8. What is 40% of 70 ? \qquad 9. 40% of what number is 70 ? \qquad
9. 30% of what number is 120 ? \qquad 11. What is 30% of 120 ? \qquad
10. If 75% of the recommended daily allowance of vitamin C is 45 mg , what is the recommended daily allowance of vitamin C ?

Use Percents to Compare

Using percents can help you compare two groups when the sizes of the groups are different.

Appling School has 300 students and 45 students ride a bus to and from school each day. Baldwin School has 500 students and 55 students ride a bus.

1. Discuss and complete these methods for calculating the percent of students at Appling School who ride a bus.

Alex's Equation	Jordan's Equation
$f \%$ is $\frac{45}{300}$.	$f \%$ of 300 is 45.
$\frac{f}{100}=\frac{45}{300}$	$\frac{f}{100} \bullet 300=45$

Aliya's Factor Puzzle
percent students
portion
whole

	45
100	300

Rachel's Idea of Going through 1\%

300 students is 100%.
$300 \div 100=3 ; 3$ students is 1%.
$45 \div 3=15 ; 45$ students is 15 groups of 3 students,
which is \qquad \%.

2. Use two methods to calculate the percent of students at Baldwin School who ride a bus.

Mixed Percent Problems

3. 26 is what percent of 130 ?
4. 25% of what number is 225 ?
5. What is 75% of 280 ? \qquad 6. 70% of what number is 595 ? \qquad

Solve.

Show your work.
7. A company spent $\$ 4,500$ of its $\$ 18,000$ advertising budget on Internet ads. What percent of its advertising budget did the company spend on Internet ads?
8. If 30% of a company's advertising budget is $\$ 7,200$, then what is the full advertising budget?
9. Another company's advertising budget is $\$ 7,200$. The company spent 30% of their budget on newspaper ads. How much did the company spend on newspaper ads?
10. If a gasoline-ethanol mixture made with 24 liters of ethanol is 15% ethanol, then how many liters is the whole mixture?
\qquad
11. If 3 gallons of antifreeze is mixed with 2 gallons of water, what percent of the mixture is antifreeze?
\qquad
What percent of the mixture is water?
\qquad
12. If a pharmacist needs to mix 800 mL of antibiotic with water so that the mixture is 40% antibiotic, then how much water does the pharmacist need to add?

Convert Between Centimeters and Millimeters

1. Label the double number line to show how centimeters (cm) and millimeters (mm) are related.
centimeters $0 \quad 1$

We can write two unit rates comparing centimeters to millimeters.

There are 10 millimeters per centimeter.
We can write this unit rate as $10 \frac{\mathrm{~mm}}{\mathrm{~cm}}$.

There is $\frac{1}{10}$ centimeter per millimeter.
We can write this unit rate as $\frac{1}{10} \frac{\mathrm{~cm}}{\mathrm{~mm}}$.

Unit rates are helpful for converting measurements from one unit to another.
2. Compare these methods of converting 52 centimeters to millimeters.

Write and Solve a Proportion

$$
\begin{aligned}
\frac{1 \mathrm{~cm}}{10 \mathrm{~mm}} & =\frac{52 \mathrm{~cm}}{x \mathrm{~mm}} \\
52 \cdot 10 & =1 \cdot x \\
520 & =x
\end{aligned}
$$

Use a Unit Rate

$\underbrace{52 \mathrm{cmh} \cdot 10 \frac{\mathrm{~mm}}{\mathrm{cma}}}_{\text {There are } 52 \mathrm{~cm}}=520 \mathrm{~mm}$	The unit cm cancels, leaving the unit mm

So, $52 \mathrm{~cm}=520 \mathrm{~mm}$.
3. Complete these methods for converting 85 millimeters to centimeters.

Write and Solve a Proportion

$$
\frac{1 \mathrm{~cm}}{10 \mathrm{~mm}}=\frac{x \mathrm{~cm}}{85 \mathrm{~mm}}
$$

Use a Unit Rate

$85 \mathrm{~m} m \cdot \frac{1}{10} \frac{\mathrm{~cm}}{\mathrm{~m} \cdot \mathrm{~m}}=$ \qquad cm

There are 85 mm , and there

 is $\frac{1}{10} \mathrm{~cm}$ in each mm .So, $85 \mathrm{~mm}=$ \qquad cm .

Convert Between Feet and Inches

4. Label the double number line to show how feet and inches are related.

5. What are the two unit rates in this situation? $\ldots \frac{\mathrm{in} .}{\mathrm{ft}}$ and $\frac{\mathrm{ft}}{\mathrm{in} .}$
6. Convert 132 inches to feet by multiplying by a unit rate. Show your work. 132 in. $=$ \qquad ft
7. Convert $6 \frac{1}{2}$ feet to inches by multiplying by a unit rate. Show your work.
$6 \frac{1}{2} \mathrm{ft}=$ \qquad in.

Practice Converting Units of Length

8. What two unit rates relate centimeters (cm) and meters (m)?
9. Convert 7.9 meters to centimeters using any method.
$7.9 \mathrm{~m}=$ \qquad cm
10. Convert 42 centimeters to meters using any method.
$42 \mathrm{~cm}=$ \qquad m
11. What two unit rates relate feet (ft) and yards (yd)?
12. Convert 16 feet to yards using any method.
$16 \mathrm{ft}=$ \qquad yd
13. Convert 24 yards to feet using any method.
$24 \mathrm{yd}=$ \qquad ft

Find Area When Units Are Different

Riley and Kelsey wanted to find the area of their rectangular bedroom. Riley measured the length and Kelsey measured the width. They made the sketch at the right to show their measurements.

Below are the girls' area calculations.

Riley's Calculation

I want to find the area in square yards, so I have to change 12 feet to yards.
$12 \mathrm{ft} \cdot \frac{1}{3} \frac{\mathrm{yd}}{\mathrm{ft}}=4 \mathrm{yd}$
Now, I can use the area formula.
$A=I w=4 y d \cdot 5 y d=20 \mathrm{yd}^{2}$

Kelsey's Calculation

I want to find the area in square feet, so I have to change 5 yards to feet.
$5 \mathrm{yd} \cdot 3 \frac{\mathrm{ft}}{\mathrm{yd}}=15 \mathrm{ft}$
Now, I can use the area formula.
$A=I w=15 \mathrm{ft} \cdot 12 \mathrm{ft}=180 \mathrm{ft}^{2}$
14. Discuss Riley and Kelsey's calculations.
15. Explain how the diagram at the right shows that $1 \mathrm{yd}^{2}=9 \mathrm{ft}^{2}$.
\qquad
\qquad
\qquad

16. Write two unit rates relating square yards and square feet.
$\ldots \frac{\mathrm{ft}^{2}}{\mathrm{yd}^{2}}$ and $\quad \frac{\mathrm{yd}^{2}}{\mathrm{ft}^{2}}$
17. Use one of the unit rates from Exercise 16 to convert Riley's area of $20 \mathrm{yd}^{2}$ to square feet. Does the answer agree with the area Kelsey got?
$20 \mathrm{yd}^{2}=$ \qquad

Practice Solving Area Problems

Solve.

18. A rectangle has a base length of 3 meters and a height of 15 decimeters. Find the area of the rectangle. Be sure to specify the unit in your answer.
19. Find the surface area of the rectangular prism at the right. Be sure to specify the unit in your answer.

What's the Error?

Dear Math Students,
The school nurse said that I am 42 inches tall. I wanted to figure out how many feet this is. Here's what I did:
$42 \mathrm{in} . \cdot 12 \frac{\mathrm{in} .}{\mathrm{ft}}=504 \mathrm{ft}$
I know I am not 504 feet tall! Please help me figure out what I did wrong and help me find my real height in feet.

Thank you.
Puzzled Penguin

20. Write a response to Puzzled Penguin.
\qquad
\qquad
\qquad
\qquad

Converting Metric Units of Liquid Volume

The most common metric units of liquid volume, or capacity, are milliliters and liters.

1. Label the double number line to show how liters (L) and milliliters (mL) are related.

2. What two unit rates relate liters and milliliters?
3. A can holds 344 mL of seltzer. How many liters is this? Find your answer in two ways: by writing and solving a proportion and by using a unit rate.

Write and Solve a Proportion
Use a Unit Rate
$344 \mathrm{~mL}=\square \mathrm{L}$
Solve using any method.
4. A bottle contains 1.89 liters of water. How many milliliters is this?
5. A soap dispenser holds 220 mL of soap. A refill bottle of soap contains 1.76 L . How many times can the dispenser be refilled from the bottle?

Converting Customary Units of Liquid
 Volume

Units of liquid volume, or capacity, in the customary system include cups, pints, quarts, and gallons.
6. Write two unit rates relating quarts (qt) and gallons (gal).
7. How many quarts would it take to fill a $2 \frac{3}{4}$ gallon punch bowl?
\qquad
8. One of the cows on Tessa's farm produces an average of 22 quarts of milk each day. How many gallons is this?
9. How many pints are in 1 gallon?
10. Use your answer to Question 9 to help you write two unit rates relating pints (pt) and gallons (gal).
\qquad
11. The school cafeteria sells 300 half-pint cartons of milk every day. How many gallons of milk is this?
\qquad
12. Which is more, 72 cups or 20 quarts? Explain how you found your answer.
\qquad
\qquad
\qquad

Converting Units of Mass

The most common units of mass are grams (g) and kilograms (kg).
13. Complete.
$1 \mathrm{~kg}=\ldots \mathrm{g} \quad 1 \mathrm{~g}=\ldots \mathrm{kg}$
14. Write two unit rates relating grams and kilograms.
15. Convert 3,575 grams to kg . $3,575 \mathrm{~g}=\ldots \mathrm{kg}$
\qquad
16. Convert $3,575 \mathrm{~kg}$ to grams.
$3,575 \mathrm{~kg}=$ \qquad
17. A nickel has a mass of 5 g . A bag contains 2 kg of nickels. How many nickels are in the bag? Explain.
\qquad
\qquad

Converting Units of Weight

The most common units of weight are ounces (oz) and pounds (lb).
18. There are 16 ounces in 1 pound. Write two unit rates relating ounces and pounds.
19. Convert 420 pounds to ounces. $420 \mathrm{lb}=$ \qquad oz
20. Convert 420 ounces to pounds. 420 oz = \qquad lb
21. Donelle adopted two puppies. Daisy weighs $7 \frac{1}{2}$ pounds. Bandit weighs 108 ounces. Which puppy weighs more? Explain.
\qquad
\qquad

Conversion Word Problems

Solve.
Show your work.
22. A box of FruitBlaster cereal contains 450 g of cereal.
a. How many kilograms of cereal will the company need to fill 15,000 boxes?
b. How many boxes of FruitBlaster cereal can the company fill with $15,000 \mathrm{~kg}$ of cereal?
23. A perfume bottle holds 5 mL . The perfume company wants to fill 25,000 bottles. How many liters of perfume will the company need?
24. A restaurant has a viewing aquarium that holds 70 gallons of water. How many cups is that amount of water equivalent to?
25. There are 75 sixth grade students at Wilson Middle School. Each student has a science book that is 5 cm thick. If all the sixth graders stacked their science books on top of each other, would the stack be as tall as the 4-meter-tall school building? Explain.
\qquad
\qquad
\qquad
\qquad

Math and Collections

Vocabulary bar graph circle graph

The bar graph and the circle graph show data about Sahil's postcard collection.

Bar Graph

Sahil's Postcards from the U.S. by Region

Circle Graph

Sahil's Postcards from the U.S. by Region

Solve. Use the bar graph.

1. What is the ratio of cards from the Northeast to cards from the West?
2. What is the ratio of cards from the West to cards from the Northeast? \qquad
Solve. Use the circle graph.
3. Are more or fewer than 50% of Sahil's cards from the Midwest? \qquad
4. Are more or fewer than 25% of Sahil's cards from the Southwest? \qquad
5. How could you check your answers to Problems 3 and 4 by using the bar graph?
\qquad

Choose Graphs to Solve

Isabel has a collection of souvenirs from U.S. presidential elections.
The graphs below show the kinds of souvenirs she has collected and the dates of the presidential elections for her souvenirs.

Isabel's Presidential Election Souvenirs

Presidential Elections of Isabel's Souvenirs

Solve. For Problems 6-8, write whether you used the bar graph, the circle graph, or both.
6. What percent of Isabel's souvenirs are buttons?
7. What percent of Isabel's souvenirs are from elections in 2000 or later?
\qquad
\qquad
8. How many of her souvenirs are from the 2008 election?
9. Hector says that the graphs make it clear that 6 of the buttons must be from the 2008 election. Do you agree? Explain.
\qquad
\qquad
\qquad

1. Dotti's potato salad uses 5 large potatoes and 2 eggs.

Choose True or False for each statement.
1a. The salad uses potatoes and eggs in a ratio of 5:2.

- True
False

1 b. The salad uses 2 potatoes for every 5 eggs.

- True

False
1c. The salad uses $\frac{5}{2}$ potatoes for each egg.

- True

False
2. How are comparing two fractions and comparing two ratios alike?

How are they different?
Alike:

Different:
3. The double line graph shows that 100% of a quantity has a mass of 24 grams.

Part A

Complete the double number line and explain your method.

Part B
Explain how you can use the double number line to find 75% of 24 grams.
\square
4. Fill in the bubble next to the measure that makes the sentence true.

There are 4 quarts in 1 gallon, so there are__ gallons in 1 quart.

- $\frac{1}{4}$
- 0.4
- $\frac{4}{1}$

5. Select Yes or No to indicate if the expression is equivalent to the ratio 3:2.
5a. $\frac{3}{2}$

- Yes
\bigcirc No
5b. 6:3
- Yes
- No
5c. $\frac{9}{4}$
- Yes
- No
5d. 12:8
- Yes
- No
5e. $\frac{2}{3}$
- Yes
- No

6. There are 420 pumpkins in Jennifer's pumpkin patch. She picked 15% of them. How many pumpkins did Jennifer pick?
(A) 15 pumpkins
(B) 28 pumpkins
(C) 42 pumpkins
(D) 63 pumpkins
7. Carly buys 4 pounds of strawberries for $\$ 9.00$. What is the unit cost of the strawberries?
\square
Choose numbers from the number tiles to write two fractions that will make the statement true. You may write a number more than once.

8. A paint mixture is 4 parts red and 5 parts white. For every 1 gallon of
paint, \qquad gallon is red and \qquad gallon is white.

Solve each proportion. Show your work.
9. $4: x=3: 5$
10. $\frac{1}{7}=\frac{b}{18}$

11. 14 is what percent of 56 ? \qquad
12. 25% of what number is 35 ? \qquad
13. Which distance is equivalent to 8 meters? Select all that apply.
(A) 80 cm
(C) 0.08 km
(B) 800 cm
(D) 0.008 km
14. Convert $8,900 \mathrm{~mL}$ to L .
15. Orange and pineapple juice are mixed in a ratio of 4 to 5 . Choose one number from each column to show the amount of each juice that is needed to make 36 gallons of orange-pineapple juice.

orange	pineapple
$\circ 12 \mathrm{gal}$	$\bigcirc 16 \mathrm{gal}$
$\circ 16 \mathrm{gal}$	$\bigcirc 18 \mathrm{gal}$
$\bigcirc 18 \mathrm{gal}$	$\bigcirc 20 \mathrm{gal}$
$\circ 20 \mathrm{gal}$	$\bigcirc 24 \mathrm{gal}$

16. Savitri buys 3 pounds of sliced turkey for $\$ 12$. At that rate, how much sliced turkey can she buy for $\$ 25$? Show your work.
17. If 35% of a company's advertising budget is $\$ 7,000$, what is the full advertising budget? Show your work.
18. A rectangle has a base of 4 feet and a height of 18 inches. The area of the rectangle is:
(A) 34 square inches.
(C) 6 square feet
(B) 72 square inches
(D) 4.5 square feet.
19. An empty bottle of olive oil has a capacity of 750 mL . How many empty bottles could be filled with 4.5 L of olive oil? Show your work.
\square
20. In a lab, Chemical A and Chemical B are mixed in a ratio of 2 to 3 .

Part A

How much of Chemical B is needed to mix with 18 liters of Chemical A ?
Explain your answer.
\square

Part B

What percent of the mixture is Chemical A? Explain your answer.
\square

Part C

If the ratio of Chemical A to Chemical B was 4 to 5 , would Chemical A be a greater or a lesser percent of the mixture? Explain your answer.
21. On Friday, Pizza Place sold a total of 120 pizzas.

Part A

30% of the pizzas sold were plain cheese pizzas. How many plain cheese pizzas were sold? Show or explain how you got your answer.
\square

Part B

Thirty of the pizzas sold were vegetarian pizzas. What percent of the pizzas sold were vegetarian pizzas? Show or explain how you got your answer.
\square

Part C

On Saturday, Pizza Place again sold 30 vegetarian pizzas, which was 10% of the total number of pizzas sold on that day. What was the total number of pizzas sold on Saturday? Show or explain how you got your answer.
\square
22. Arun's honey-mustard sauce has 3 cups honey and 4 cups mustard. Ben's honey-mustard sauce has 5 cups honey and 8 cups mustard.

Part A

Graph and label a line to represent each ratio.

Part B

Explain how to use the two lines and a straightedge to determine whose honey-mustard sauce is more honey-tasting.
\square

Part C

Jenna makes a sauce with 4 cups of honey and 6 cups of mustard. Order the three sauces from most to least honey-tasting. Explain your reasoning.
\square

